

Free fatty acids in plasma:

all fatty acids (FAs) NOT bound in tryglycerids, phospholpids, cholesterol etc., hence "free": FFA

Is 'free' same as dissolved?

Practical insolvable: mainly bound in plasma albumin: FFA transporter

FFA-albumin → free albumin + dFFA

They should form the micelles and finally surfactant layer.

Problem:

Is FFA well (monomolecular) disolved?

What is concentration of dFFA?

Some basic chemistry

reaction equation:

 $K_d = \frac{[free \ albumin] \cdot [dFFA]}{[FFA-albumin]}$

(K_d: reaction constant of dissociation is 14 nM)

[free albumin] and [FFA total] can be measured,

Further:

Free albumin and FFA-albumin ca 106 x dFFA and K_d,

So, [FFA-albumin] = [FFA] and [free albumin] = [total albumin] – [FFA].

$$[dFFA] = \frac{K_d \cdot [FFA]}{[total \ albumin] - [FFA]},$$

Very few is monomolecular dissolved, **dFFA** is in nM range!! (even less as bimeres etc.).

Detectable bubbles arise within ½ hour after surfacing. (long-chain) dFFAs should form monolayers to cover the bubbles.

Problems:

It there enough dFFA??
Are skin formed fast enough??

QUESTIONS

A What is the total bubble area to be covered?

B Is the quantity of dFFAs enough to cover all nuclei and bubbles?

C If not, is reservoir of FFA-albumin sufficient to cover all nuclei and bubbles?

D Is dissociation of FFA-albumin fast enough when amount of dFFAs is insufficient?

E Can the generation of all monolayers be completed in about one hour?

QUESTIONS

A What is the total bubble area to be covered?

Suppose: Bubble grade is KM = 1:

detectable bubbles ca. 2 /L (surface 10^{-1} mm², D = 180 μ m),

micro-bubbles about 10⁵ with a surface of 10⁻³ mm²,

about 10⁷ with 10⁻⁵ mm²,

Nuclei about 10⁹ with 10⁻⁷ mm²?

Together: 300 mm²/L plasma

Bubble grade is KM = 4: Together: 6000 mm²/L?

QUESTIONS

A What is the total bubble area to be covered?

B Is the quantity of dFFAs enough to cover all nuclei and bubbles?

With some 4 nm/L (outcome reaction equation) ca. 275 **mm²/L plasma**

Even for KM = 1 this is hardly/not enough.

QUESTIONS

A What is the total bubble area to be covered?

B Is the quantity of dFFAs enough to cover all nuclei and bubbles?

C If not, is reservoir of FFA-albumin sufficient to cover all nuclei and bubbles?

FFA-albumin is in the mM range, so

for KM = 1 excess is factor of some 40.000 X

for KM = 4 some 1000x

QUESTIONS

- A What is the total bubble area to be covered?
- B Is the quantity of dFFAs enough to cover all nuclei and bubbles?
- C If not, is reservoir of FFA-albumin sufficient to cover all nuclei and bubbles?
- D Is dissociation of FFA-albumin fast enough when amount of dFFAs is insufficient?

Dissociation of FFA-albumin is often needed.
Rate of dissociation is can be 1.4 mmole/s: immediate replenishment since micelle formation is very slow.
So, dFFA is always the same for given total [albumin[and [FFA].

QUESTIONS

A What is the total bubble area to be covered?

B Is the quantity of dFFAs enough to cover all nuclei and bubbles?

C If not, is reservoir of FFA-albumin sufficient to cover all nuclei and bubbles?

D Is dissociation of FFA-albumin fast enough when amount of dFFAs is insufficient?

E Can the generation of all monolayers be completed in about one hour?

No, takes possibly hours to combine mono-, bi- etc polymeres of FFA to micelles and then to complete skins. The **CMC (critical mycel concentration)** to form mycelles is about 1 mM of dFFA, close to a million times the actual dFFA concentration!

Conclusion from theoretical study

Long-chain FFA can not be used to form surfactant skins around DCI bubbles.

Medium-chain FFAs are better dissolvable and their CMC are much higher. However, **they do not occur in food** or the concentration is much lower than CMC (Naoctanoic acid 0.36 M).

Micelles of **short-chain** FFAs do occur and with n=4 or 6 CMC is very high and it is highly questionable whether they can form stable skins.

Methods

52 male divers

precordial Doppler method, 40, 80, 120 and 160 min) → Kisman Integrated Severity Score (logKISS).

Half of subjects obtained fat rich **and** half fat poor meals to enlarge the FFA and TriG range of blood plasma.

63 simulated dives (21msw/40min profile)

11 both (paired testing).

Correlate post exposure, dFFAs and total FFA (mM range), with **venous gas bubbles** (KISS at 40, 80, 120, 160 min post-dive, precordial)

- Physics

am	Methods								
	Gro	up Frich, n=	=28	Gro	oup Fpoor, n=	=24			
	Age	VO _{2max}	body fat	Age	VO _{2max}	body fat			
	(years)	(ml/kg.min)	(%)	(years)	(ml/kg.min)	(%)			
mean	45.5	42.3	21.2	46.3	42.0	21.2			
SD	3.47	4.82	2.9	3.10	6.62	4.2			

Statistics: groups perfectly matched

Δ's: 0.8 year (2%), 0.3 ml/kg.min (1%), 0.0% BF

DOM PROM

Group differences post exposure

Measured item	Fat-rich group, n=28	Fat-poor group, n=24	Frich - Fpoor	
	mean± SD	mean±SD	p-value t test	
FFA	0.20±0.08	0.078±0.04 9	7x10-8	

Results

No correlation between post exposure albumin, dFFAs (nM range) and total FFA (mM range) and **bubbles.**

Also not with TriG and TCh

33

MEASURING SURFACE TENSION

When a substance lowers surface tension \rightarrow decreases R^{crit}, hence bubbles have longer time to grow \rightarrow

more bubble survival \rightarrow more bubbles.

DATE OF PRODUCTS

MEASURING SURFACE TENSION

The hypotheses

We expect the following associations, i.e. with significant correlations:

- Lipids&proteins (FFAs etc. and albumin) with ST (negative correlate).
- Proteins (albumin) with VGE (negative correlate).
- ST with VGE (negative correlate).

ndependent -> dependent ↓	TCh	TGI	FFA	alb	TPr	ST
ST	079 .55	0.078 .56	16 .24*	23 .09	.31 . 02 **	
logKISS	17 .20	.17 .20	07 .60	.01 .92	.02 .88	.01 .93
** not signification Only Total exposure Bubbles substan there are	Prote no sig are i ce or	in seer nificand not aft by S	ns to a ce. He fecter [:	affect nce r d by	ST bu	

Main Findings

- No significant and consistent effects of lipids and proteins on ST pre- and post exposure.
- · Lipids and proteins do not affect VGE.
- VGE does not correlate with ST.
 (see also Gempp et al, Br J Sports Med 2009)
- All analyses with subjects with KISS>0: same results
- y is ca. 57 mN/m (corrected).
- No KISS differences found with within-subject fatrich versus fat-poor meals (paired t-tests, no significant correlations).

C. C. Physics

am C

Discussion 1

FFA's etc. are not good surfactant candidates,

But what about phospholipids?

All have very poor solubility and high CMCs,

Except DPPC (dipalmitoylphosphatidylcholine):

hardly soluble and low CMC.

Can it form dimeres etc. in plasma?

Anyway: for DPPC-skin ST is much too high

real Physic

Discussion 2

ST higher than expected, ca. 57 mN/m (corrected)

→ small stabilizing effect (r^{crit} ca. 20% lower) too small for effect on KM

Yount 20 mN/m: 2½ x more bubbles! Well measurable.

Possibly, the 15 mN/m decrease (rel. to water) is caused by predominantly protein mixture, surrounding the bubbles.

Albumin and tot-protein levels practically invariable (post-pre, rich-poor & within-subject)!!

Division

Discussion 3

Albumin is a promising candidate (milk chemistry) to coat bubbles and such reducing **y**.

It has 9 binding sites for FFA and it also bounds phospholipids. Their C-tail may point to the bubble interface.

DPPC is probably also embedded in albumin. But indissoluble DPPC multimeres and micelles from membrane destruciion can be suspended in the plasma.

PTUN

